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Abstract—With recent missions such as advanced space-based
observatories like the Solar Dynamics Observatory (SDO) and
Parker Solar Probe, and ground-based telescopes like the Daniel
K. Inouye Solar Telescope (DKIST), the volume, velocity, and
variety of data have made solar physics enter a transformative
era as solar physics big data (SPBD). With the recent advance-
ment of deep computer vision, there are new opportunities in
SPBD for tackling problems that were previously unsolvable.
However, there are new challenges arising due to the inherent
characteristics of SPBD and deep computer vision models. This
vision paper presents an overview of the different types of SPBD,
explores new opportunities in applying deep computer vision
to SPBD, highlights the unique challenges, and outlines several
potential future research directions.

Index Terms—Deep Computer Vision, Solar Physics, Big Data

I. INTRODUCTION

Solar physics, which focuses on studying the Sun and its

interactions with the solar system, has always been data-

intensive. Recent missions have been launched such as the

advanced space-based observatories like the Solar Dynamics

Observatory (SDO) [1] and Parker Solar Probe [2], and

ground-based telescopes like the Daniel K. Inouye Solar

Telescope (DKIST) [3], providing high-resolution images and

continuous monitoring of solar activities. Specifically, access

to the curated SDO data [4] implies downloading 6.5 terabytes

(TB) of data. The estimated amount of data in an excellent ob-

serving day for DKIST easily reaches the petabyte (PB) regime

[5]. These solar data, characterized by their volume, velocity,

and variety, have made solar physics enter a transformative era

with the advent of big data, referred to as solar physics big

data (SPBD) [6].

As an observational science, we observe solar data in solar

physics since we cannot change the experimental conditions.

Analyzing solar data has always been researchers’ interest,

fostering the development of solar physics data mining [7],

a research field that aims to discover non-trivial, previously

unknown, but potentially useful patterns or make accurate pre-

dictions based on solar data. Due to the inherent characteristics

of SPBD, the data’s complexity and size often exceed the ca-

pabilities of traditional methods, including statistical learning

techniques. This necessitates developing and applying more

efficient methods to manage and analyze SPBD effectively.
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Thanks to advanced cyberinfrastructure, efficient com-

putational hardware (e.g., GPUs), carefully designed neu-

ral network architecture, and learning algorithms, deep

computer vision, i.e., deep learning-based computer vi-

sion, has brought new opportunities to various domains.

Specifically, it has achieved tremendous success in solar

physics [5] by performing tasks such as image segmentation,

super-resolution, image-to-image translation, etc.

When SPBD meets deep computer vision, significant new

opportunities emerge due to the recent increase in the capacity

of deep models (i.e., deep neural networks). Deep computer

vision has significantly transformed the analysis of SPBD,

making it possible to automate and process vast and complex

datasets with exceptional accuracy and speed. One of the key

transformative aspects is its ability to perform automatic fea-

ture extraction/engineering, eliminating the need for manually

identifying relevant patterns and structures within solar data.

Therefore, these powerful models can now detect and classify

intricate solar phenomena, such as sunspots, solar flares, and

coronal mass ejections (CMEs), with great precision and in

real time. As a result, the capacity of deep computer vision

allows for the extraction of hidden patterns within SPBD that

traditional models may overlook.

This vision paper will explore emerging opportunities in

applying deep computer vision to solar physics big data,

highlight the unique challenges, and outline several potential

future research directions.

II. TYPES OF SPBD

A. Ground Imaging and Spectroscopy of Many Decades

Ground-based observations have a long history over many

decades. Hα (656.3 nm), He I 10830 Å (1083 nm), and Ca

II K (393.37 nm) are spectral lines for studying different

layers of the Sun’s atmosphere. Hα, a prominent line in the

red visible spectrum, is associated with the chromosphere

and is widely used to observe solar prominences, filaments,

and flares. Hα images are available from several major ob-

servatories like Global Oscillation Network Group (GONG),

Big Bear Solar Observatory (BBSO), and Kodaikanal Solar

Observatory (KSO). He I 10830 Å, located in the infrared

spectrum, probes the upper chromosphere and lower corona,

providing insights into magnetic fields and coronal holes.

He I 10830 Å images can be accessed through the National

Solar Observatory (NSO) and Mauna Loa Solar Observatory.
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Ca II K, found in the near-ultraviolet, focuses on the lower

chromosphere and upper photosphere, making it essential for

studying plages, chromospheric network structures, and long-

term solar activity. Ca II K images are from KSO, BBSO, and

the Meudon Solar Observatory, among others.

B. Line-of-sight and Vector Magnetograms

Magnetograms are specialized images that visualize the

magnetic field strength and orientation on the Sun’s sur-

face (photosphere). These images are captured by various

solar observatories and instruments, each contributing to a

comprehensive understanding of solar magnetic activity. The

SOHO’s Michelson Doppler Imager (SOHO/MDI) was among

the first to provide long-term, consistent magnetogram data,

laying the groundwork for solar magnetic field research.

The Hinode’s Solar Optical Telescope (Hinode/SOT) offers

detailed magnetograms that help refine our understanding of

the Sun’s magnetic field structure and dynamics, especially

at smaller scales. The SDO’s Helioseismic and Magnetic

Imager (SDO/HMI) provides high-resolution, continuous ob-

servations of the Sun’s magnetic fields. The BBSO’s Goode

Solar Telescope (BBSO/GST) also contributes high-resolution

magnetograms, focusing on capturing fine details of solar

magnetic fields.

C. In-Space Observations — Extreme Ultraviolet

Extreme Ultraviolet (EUV) images captured by the SDO’s

Atmospheric Imaging Assembly (SDO/AIA), the SOHO’s Ex-

treme ultraviolet Imaging Telescope (SOHO/EIT), and the So-

lar Terrestrial Relations Observatory’s Sun Earth Connection

Coronal and Heliospheric Investigation (STEREO/SECCHI)

provide critical in-space observations of the Sun’s corona.

These instruments, positioned in space to avoid atmospheric

interference, offer a direct and unfiltered view of the Sun’s

outer atmosphere, where temperatures reach millions of de-

grees. SDO/AIA provides high-resolution images at multiple

wavelengths of EUV light with a rapid cadence, offering near-

real-time monitoring of solar activity from its geosynchronous

orbit around Earth. SOHO/EIT, positioned at the L1 Lagrange

point, has been providing long-term EUV data since 1996,

contributing to our understanding of solar cycles and long-

term solar activity. STEREO/SECCHI, with its two spacecraft

in different orbits around the Sun, offers unique stereoscopic

views, enabling three-dimensional analysis of solar events like

CMEs as they travel through space.

III. NEW OPPORTUNITIES OF DEEP COMPUTER VISION FOR

SOLAR PHYSICS BIG DATA

A. Why Deep Computer Vision for SPBD?

First, deep computer vision models, characterized by their

extensive number of parameters (usually more than millions)

are highly effective at handling large volumes of complex data.

These models can detect complex solar patterns effectively,

which is crucial for studying intricate physical processes that

involve various interacting variables across diverse spatial and

temporal domains.

Second, deep computer vision enables end-to-end training

that eliminates the need for manual feature engineering. Tra-

ditional solar physics data mining requires feature engineering

with domain-specific knowledge, which is labor-intensive.

This process must be repeated for each new application,

which is both time-consuming and potentially inadequate for

capturing intricate patterns. Deep computer vision can directly

learn features/patterns from the data, minimizing the effort and

time required for feature engineering. For instance, researchers

have trained deep models for solar flare prediction using full-

disk line-of-sight magnetograms provided by SDO/HMI [8]–

[10], without manually extracting physics-based features.

Third, Large language model (LLM) has been very suc-

cessful recently. It also has been applied to the science field

[11] already. SPBD involves multiple data modalities, such

as images and text data. Therefore, SPBD is well suited to

apply Vision Language Models (VLMs) to analyze different

types of data at once, where deep computer vision is one

important component in VLMs. VLMs have demonstrated that

with sufficient training data, it’s possible to train a general

model capable of performing well across diverse data sources.

B. Major Transformative Applications

1) Image Segmentation: Deep computer vision has signif-

icantly advanced image segmentation of solar images, which

is particularly important given the vast quantity of solar

images/videos available every day. Automating the detection

and segmentation of solar structures within these images could

enable the creation of extensive databases. Sunspots, flares,

coronal holes, and other solar features are prime candidates

for these applications. Illarionov and Tlatov [12] applied U-

Net architecture to identify coronal holes on SDO/AIA images.

Jiang et. al [13] proposed SolarUnet to identify and track

solar magnetic flux elements or features in observed vector

magnetograms based on the Southwest Automatic Magnetic

Identification Suite. Later, Jiang et. al [14] proposed Fibril-

Net for tracing chromospheric fibrils in Hα images of solar

observations from BBSO/GST. Castillo et. al [15] presented

the first attempts to classify and identify structures in the

solar granulation based on the U-Net architecture. Zheng et.

al [16] utilized the U-Net to identify filaments and implement

the Channel and Spatial Reliability Tracking algorithm for

automated filament tracking of CHASE/HIS Hα images.

2) Super-resolution: Super-resolution (SR) is a widely used

technique that aims to improve the spatial resolution of images.

In solar physics, observational instruments like telescopes and

imaging satellites have inherent resolution limits based on their

design, such as the size of the optical aperture and the quality

of the detectors. Recent studies in solar physics have utilized

advanced SR methods to improve the quality of solar images.

Researchers have improved the spatial resolution of SDO/HMI

images to match the spatial resolution of BBSO/GST. Deng et

al. [17] used a combination of generative adversarial networks

(GAN) [18] and self-attention mechanisms. Song et al. [19]

proposed an improved conditional denoising diffusion prob-

ability model (ICDDPM). Researchers also tried to improve



the spatial resolution of magnetograms. Baso and Ramos [20]

developed a method called Enhance to improve the resolution

of SDO/HMI magnetograms to the high-resolution image

from Hinode. Xu et al. [21] developed SolarCNN, a residual

attention-aided convolutional neural network to improve the

resolution of SOHO/MDI magnetograms using SDO/HMI data

as high-resolution ground truth.

3) Image-to-image Translation: Image-to-image translation

is a powerful technique in computer vision that involves

converting images from one domain to another. The pix2pix,

developed by Isola et al. [22], is one of the most influential

tools in this domain, which has been extensively applied in

solar physics. One application is cloud removal in Hα images.

Wu et al. [23] employed a pix2pix network with a U-Net

generator and PatchGAN discriminator to effectively remove

cloud shadows. Ma et al. [24] introduced RPix2PixHD, which

integrates a pix2pixHD network with a registration network

to handle misaligned image pairs. Another critical application

is generating synthetic solar images. Park et al. [25] used

pix2pixHD to create synthetic ultraviolet (UV) and EUV solar

images from SDO/HMI images. Son et al. [26] generated

He I 10830 Å images from SDO/AIA images, successfully

producing high-resolution synthetic images that closely match

real observations, thus filling gaps caused by atmospheric

conditions or equipment issues.

4) Stokes Inversion: Obtaining high-quality magnetic and

velocity fields through Stokes inversion is crucial in solar

physics [27], as the Sun’s magnetic field drives all solar

activities. Observational instruments do not directly measure

the magnetic field; instead, Stokes inversion is used to infer

the physical conditions of the solar atmosphere by interpreting

observed Stokes profiles. Various inversion methods, such as

the Milne–Eddington (ME) approximation, aim to achieve the

best fit to the observed Stokes profiles. Notable implemen-

tations include SPINOR, Helix+, and VFISV [28]. However,

traditional Stokes inversion methods are time-consuming. The

advent of powerful telescopes like the DKIST and BBSO/GST,

which generate large volumes of solar Stokes profile data

daily, exacerbates these challenges, pushing the limits of these

technologies [29].

Efforts are being made to employ deep learning techniques

to accelerate Stokes inversion within a practical timeframe.

Asensio Ramos and Dı́az Baso [30] presented two convolu-

tional neural networks for Stokes inversion on synthetic 2D

maps, using spatial coherence to produce a 3D cube of ther-

modynamic and magnetic properties. Liu et al. [28] designed

a pixel-level CNN (PCNN) to perform Stokes inversion on

GST/NIRIS data at BBSO, producing magnetic field vectors

from Stokes Q, U , and V profiles. Later, Jiang et al. developed

a stacked Deep Neural Network to invert all four Stokes

profiles from GST/NIRIS, producing magnetic and velocity

field vectors [27]. Higgins et al. [31] employed a U-Net CNN

to speed up vector magnetogram production from SDO/HMI,

refining it with Hinode/SOT-SP data, leading to SynthIA’s

development [32]. Yang et al. recently introduced the SPIn4D

project to develop CNNs to rapidly estimate solar photosphere

properties from DKIST observations using large-scale MHD

simulations and synthetic Stokes profiles [29].

IV. UNIQUE CHALLENGES

Despite the recent development of deep computer vision for

SPBD, there are several unique challenges as below.

A. Image Cleaning, Registration, Alignment

The integration and alignment of multi-instrument data,

such as Hα from BBSO and magnetograms from instruments

like SDO, require image cleaning, registration, and alignment

methods to ensure consistency and accuracy across different

data sources. In-space instruments often benefit from more

stable observing conditions, while ground-based telescopes

are affected by atmospheric distortions such as turbulence,

absorption, and scattering, which can degrade data quality.

These atmospheric effects needed to be corrected when pairing

ground-based data with in-space observations before registra-

tion/alignment. Challenges also include variations in spatial

and temporal resolution, observational perspectives, and differ-

ences in wavelength bands and filters by different instruments.

For example, the Sun’s rotation and rapidly changing features

would change variations in spatial and temporal resolution.

Differences in the field of view between instruments pose

additional challenges when pairing data, particularly when

comparing large-scale features observed from space with fine-

scale structures captured from the ground.

B. Reliability of AI-generated Data

One of the most significant challenges in applying deep

computer vision techniques to SPBD is ensuring that AI-

generated data and predictions are not only statistically

accurate but also meaningful in physics. Domain-specific

knowledge and physics-based evaluations are crucial for so-

lar physics applications. For instance, when applying super-

resolution techniques to magnetograms, the need for physics

evaluation approaches is highlighted in [33], such as verifying

the integration of radial magnetic field components (assuming

the fields are divergence-free) and gradient evaluation to

examine polarity inversion lines between bipolar magnetic

field regions. These physics-based metrics guide the design

of loss functions to maintain the physical integrity of the

synthetic data. Researchers also applied AI-generated data

to real applications as an evaluation approach. AI-generated

synthetic magnetograms are used to address data imbalance

issues in flare prediction, achieving higher prediction accuracy

[34]. Similarly, temporal profiles of magnetic parameters are

aligned with flare eruptions to validate the reasonableness of

magnetic field extrapolation results [35].

C. Black Box of Deep Computer Vision

In solar physics, there are well-developed physics models

such as magnetohydrodynamic modeling [36]. Compared to

these physics-based models, deep neural networks are often

considered black boxes with limited explainability, which

raises concerns, especially when the goal is to understand



and advance physics. The opacity of these deep models

makes it challenging to trace and explain how they transform

inputs into outputs, complicating debugging, refining, and

determining when the model might fail. For example, when we

use SDO/HMI images for solar flare prediction, deep models

cannot tell which part of the image is important for flare

prediction. Addressing these challenges through research in

interpretable and explainable AI is crucial for the responsible

and widespread use of deep computer vision.

V. FUTURE RESEARCH DIRECTIONS

A. AI/ML-ready Dataset

Solar physicists have begun to use AI/ML to achieve

breakthroughs. The AI/ML approach is data-intensive, where

datasets are used for training, tuning, and testing AI/ML.

It starts with creating “clean” datasets which require fix-

ing structural errors, handling missing data, removing non-

physical outlier points, and/or filtering observations. With a

clean dataset, even simple algorithms can yield important

insights. The data quality is key to the performance of AI/ML

algorithms. Therefore, solar physics data must be AI/ML-

ready to apply various methods and tools and to be stored

as AI/ML catalogs and archives for public use. Traditional

methods of data preparation/creation are often labor-intensive

and time-consuming, limiting the speed and efficiency of

research. An automated pipeline such as the ones in [37],

[38] is needed to streamline the process of data acquisition,

cleaning, normalization, and annotation, ensuring that datasets

are not only accurate but also optimized for developing AI/ML

models. Such a system would significantly enhance the capa-

bility to handle large-scale solar datasets, allowing researchers

to focus on developing and refining models rather than on

preliminary research on a small-scale dataset.

B. Physics-informed Computer Vision

Most deep computer vision models in SPBD are purely

data-driven, and their results can not be considered fully

reliable for solar physicists. These data-driven models often

lack the underlying physical understanding necessary to ac-

curately analyze and interpret solar phenomena, which are

governed by intricate physical processes. To address this issue,

physics-informed computer vision is crucial in solar physics

research because it allows for the integration of established

physical laws and domain-specific knowledge directly into

deep computer vision models. For example, physics-informed

neural networks (PINNs) have been applied to accelerate

solar coronal magnetic fields modeling [39], [40]. Physics-

informed computer vision combines data with known under-

lying physical laws, making them more effective than models

that rely only on data. In solar physics, this approach helps

the models make better predictions, even when there’s limited

data available. It also ensures that the predictions make sense

according to the laws of physics, which makes the results more

trustworthy and easier to understand. This synergy between

physics and AI/ML ultimately accelerates scientific discovery

and improves our ability to mitigate space weather risks.

Without incorporating domain-specific knowledge, data-driven

methods can lead to overfitting, especially when faced with

limited or noisy data.

C. Interpretability and Explainability

Apart from physics-informed computer vision, interpretable

and explainable AI is essential to open the black box of

deep models in solar physics research because it helps re-

searchers understand how deep models make predictions.

Solar physics involves studying complex phenomena like solar

flares, sunspots, and magnetic fields, which are difficult to

predict and analyze. When deep computer vision models are

used to study these events, it’s important that scientists can

trace the model’s decisions back to the specific data or features

that influenced them. This transparency allows scientists to

check whether the predictions make sense based on what

is already known about the Sun and can even help uncover

new patterns or insights that were previously hidden. By

making deep models more interpretable, scientists can trust

the results more, collaborate better with AI experts, and use

these tools more effectively to push the boundaries of our

understanding of solar activity. For example, researchers have

been working on the interpretability and explainability of solar

flare prediction models [41]–[43].

D. Vision Language Model

VLMs such as Minigpt-4 [44] could revolutionize the field

by enabling a more comprehensive analysis of solar events.

These advanced models can seamlessly integrate visual data

from solar images with descriptive textual information, signifi-

cantly enhancing the depth and precision of analyzing complex

solar activities and events. For instance, by combining high-

resolution images of solar flares, sunspots, and CMEs with

detailed contextual explanations, VLMs could play a crucial

role in automating the classification of various solar features.

Additionally, these advanced models can detect patterns that

might otherwise go unnoticed and predict solar events with

improved accuracy. The fusion of visual and text data helps

us make more insightful discoveries and improves our under-

standing of how the Sun works. This, in turn, advances fore-

casting capabilities, ultimately contributing to more reliable

space weather predictions, which are vital for protecting both

terrestrial and space-based technological systems.

REFERENCES

[1] W. D. Pesnell, B. J. Thompson, and P. Chamberlin, The solar dynamics

observatory (SDO). Springer, 2012.
[2] A. W. Case, J. C. Kasper, M. L. Stevens, K. E. Korreck, K. Paulson,

P. Daigneau, D. Caldwell, M. Freeman, T. Henry, B. Klingensmith et al.,
“The solar probe cup on the parker solar probe,” The Astrophysical

Journal Supplement Series, vol. 246, no. 2, p. 43, 2020.
[3] T. R. Rimmele, M. Warner, S. L. Keil, P. R. Goode, M. Knölker, J. R.

Kuhn, R. R. Rosner, J. P. McMullin, R. Casini, H. Lin et al., “The
daniel k. inouye solar telescope–observatory overview,” Solar Physics,
vol. 295, no. 12, pp. 1–49, 2020.

[4] R. Galvez, D. F. Fouhey, M. Jin, A. Szenicer, A. Muñoz-Jaramillo, M. C.
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